
 1

Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film  
Membranes with Stress Concentrations  

 
Alexander Tessler and David W. Sleight 

Computational Structures and Materials Branch, M/S 155 
Research and Technology Directorate 

NASA Langley Research Center, Hampton, VA 23681-2199, U.S.A. 
 
 

ABSTRACT 

Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail 

membrane problems in order to model the out-of-plane deformations due to structural wrinkling. 

Whereas certain problems lend themselves to achieving converged nonlinear solutions that 

compare favorably with experimental observations, solutions to tensioned membranes exhibiting 

high stress concentrations have been difficult to obtain even with the best nonlinear finite 

element codes and advanced shell element technology. In this paper, two numerical studies are 

presented that pave the way to improving the modeling of this class of nonlinear problems.  The 

studies address the issues of mesh refinement and stress-concentration alleviation, and the effects 

of these modeling strategies on the ability to attain converged nonlinear deformations due to 

wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of 

stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing 

the nonlinear solution to lock in the membrane response mode, while totally discarding the very 

low-energy bending response that is necessary to cause wrinkling deformation patterns. 

INTRODUCTION 

Solar sails are large thin-polymer film structures that utilize solar light for their propulsion. 

Because of their large size and operational use in a weightless space environment, full-scale solar 
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sails spanning several hundred meters in length are particularly difficult to test in a laboratory, 

thus necessitating the need for reliable and high fidelity computational methods to conduct 

virtual testing.  

From the solid mechanics viewpoint, a thin-film solar sail is a membrane structure having a 

thickness that is several orders of magnitude smaller than its lateral dimensions.  This structural 

characteristic implies that the bending stiffness is negligibly small compared to the membrane 

stiffness, and predominantly tensile membrane stresses develop due to applied tensile loading.  

There also exist, however, rather low compressive stresses that tend to wrinkle the material, 

producing geometrically large out-of-plane displacements.  Because the structural wrinkles in 

solar sails may detrimentally affect such principal parameters as stability, maneuverability, and 

reflectivity, the issue of reproducing these low-energy deformation modes computationally has 

generated considerable research activities in recent years (e.g., refer to [1-2] and references 

therein).  

To enable computational modeling of wrinkling deformations, both membrane and bending 

flexibilities must be considered in the analytical model based on geometrically nonlinear 

kinematics with large displacements and rotations. Departing from the classical tension-field 

theory, several recent computational studies have employed geometrically nonlinear shell finite 

element models [2-6].  While some success has been achieved–particularly when modeling 

wrinkled equilibrium states in relatively simple problems–the problems exhibiting high stress 

concentrations due to geometrical effects and/or loading have been exceptionally difficult to 

solve even with the best nonlinear finite element codes and advanced shell element technology.  

There is still no consensus on how to consistently produce high fidelity, reliable solutions for this 

class of problems, as evidenced by the various ad hoc approaches and their rather limited success 
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and acceptability.  

 

In a recent computational study, Tessler et. al. [2] employed a geometrically nonlinear, static 

shell analysis using the ABAQUS finite element code [7]. They demonstrated that for perfectly 

flat membranes the onset of wrinkling deformations can be facilitated using small, 

pseudorandom, out-of-plane geometric imperfections imposed at the nodes. The approach is 

computationally unbiased, simple, and efficient, and proved to be effective even for very low 

imperfection amplitudes and a wide range of spatial distributions. Additionally, the authors have 

proposed how to model the corner regions subjected to concentrated loads. To alleviate the 

deleterious effect of high stress concentration, they proposed to truncate the corner regions and 

to replace the concentrated loads with the statically equivalent distributed loads. This modeling 

strategy provided a simple means of (a) removing the severe stress concentration resulting from 

concentrated forces applied at corner nodes, and (b) improving the corner region mesh quality 

and, hence, element performance. This modeling approach enabled physically realistic 

predictions of the deformations of a flat square membrane loaded in tension by corner loads.  

In the present paper, the modeling ideas of Ref. [2] are explored further to address key 

computational parameters affecting the simulation of wrinkles in thin-membranes with stress 

concentrations. The focus problem is a flat square KAPTON® membrane loaded in tension at its 

four corners. A geometrically nonlinear, updated Lagrangian shell formulation [7] is employed to 

simulate the formation of wrinkled deformations. Use is made of the four-node, S4R5 shell 

element based on large displacements and small strains. The element employs reduced 

integration of the transverse shear energy and a numerical Kirchhoff correction factor to ensure 

locking-free behavior in the ultra-thin regime of bending. The element formulation also uses an 
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hourglass control method to suppress spurious hourglass modes that result from reduced 

integration.  

Two numerical studies are undertaken to gain further insight into the proper modeling of 

wrinkling deformation states in thin-film membranes with stress concentrations. The first study 

focuses on the mesh refinement strategy near the high stress concentration regions where a 

tensile traction load is prescribed along a truncated corner of a membrane. The second study 

deals with the same membrane having various sizes of corner truncation. In all cases, uniform 

tensile tractions are applied along the truncated edges at the corners, and small (as compared to 

the membrane thickness) pseudorandom imperfections are imposed in a symmetric fashion with 

respect to the four corners of the membrane. 

 

SQUARE THIN-FILM MEMBRANE UNDER CORNER TENSILE LOADS 

Recently, Blandino et al.  [1] carried out a laboratory test on a 500 mm square, flat membrane 

made of a KAPTON® Type HN film. The material properties, membrane dimensions, and 

loading are shown in Figure 1. The membrane is subjected to tensile corner loads (F=2.45 N) 

applied in the diagonal directions via Kevlar threads at the left and bottom corners of the 

membrane. The top and right corners of the membrane are fixed to the test frame with Kevlar 

threads. The corners are also reinforced on both sides with small patches of a transparency film 

(approximately 10 mm in diameter).  

A suitable analytical model, that is statically equivalent to the experimental one, would result 

in the loading by four corner tensile forces acting in the opposite directions along the two 

diagonals of the square membrane. In a computational shell model, specifying the applied 

concentrated forces at the corner nodes does not lead to a wrinkled equilibrium state, even with 
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the inclusion of the geometric imperfections. Recent computational studies [2,3] have shown that 

structural wrinkling can be predicted by eliminating sharp-corner meshes in the regions where 

concentrated tensile forces are applied.  The truncation of sharp corners improves load transfer 

and mesh quality in the local regions of stress concentration. Furthermore, by replacing a tensile 

force with a statically equivalent distributed traction, artificially high stress concentrations are 

mitigated, thus improving the kinematics in the critical corner regions from which wrinkles 

radiate.  

This modeling philosophy was previously demonstrated on the square thin-film membrane 

subjected to symmetric corner tensile loads [2].  In the finite element model, the corners of the 

square membrane were truncated, as shown in Figure 2.  The size of the corner truncation was 

chosen to replicate in a simple, albeit rudimentary, way the reinforcement conditions used in the 

experiment; thus, a more precise reproduction of the reinforced corner material lay-up and 

geometry was not attempted. The domain of the entire membrane was discretized with a 

relatively refined mesh of 4,720 four-node shell elements in anticipation that such a model could 

result in a suitable qualitative comparison with the experiment. The finite element mesh was 

augmented by pseudorandom, out-of-plane imperfections distributed over the interior nodes of 

the model with amplitudes of 10% of the membrane thickness. It was shown that imperfection 

amplitudes, ranging from 1 to 100% of the membrane thickness, predict practically the same 

wrinkling deformations, and that the imperfections need only be imposed near the truncated 

corner regions. 

The contour plots depicting the wrinkling displacement patterns for the square thin-film 

membrane in the experiment [1] and the geometrically nonlinear shell analysis [2] are shown in 

Figure 3.  The computational model is able to predict four wrinkles radiating from the truncated 
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corner regions, closely correlating with those achieved in the experiment. The analysis also 

predicts that curling occurs at the free edges as observed in the experiment, although the 

experiment shows somewhat greater wrinkle amplitudes. Considering a number of 

simplifications in the computational model, i.e., not attempting to account for the actual 

imperfections, corner boundary conditions, and inherent asymmetry of the experimental setup, 

the comparison with the experiment should only be judged from the qualitative point of view. In 

this regard, the computational simulation can be viewed as highly successful.  

 In what follows, two numerical studies are discussed, for the square thin-film membrane in 

tension, to ascertain the key factors for modeling wrinkling deformations. The first study 

addresses the question of how mesh refinement in the region of stress concentration affects the 

computational model’s ability to produce wrinkling deformations. The second study examines 

how the truncated corner size influences the formation of wrinkles in the computational model. 

In all cases, uniform tensile tractions are applied along the truncated corner edges with the total 

load maintained as a constant. Pseudorandom out-of-plane imperfections are imposed in a 

symmetric fashion with respect to the four corners of the membrane, with their magnitudes 

maintained at 10% of the membrane thickness.  

 

Mesh refinement at truncated corners 

In this study, the effects of various mesh refinements near the truncated corners of the 

membrane are investigated. To take advantage of the problem symmetry, a single symmetric 

quadrant is modeled, as illustrated in Figure 4.  In this model, the truncated corner edge size is 

set as δ=3.52 mm.  

The study revolves around an element size ratio defined as λ =  hcorner /hcenter, where hcorner 
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and hcenter denote, respectively, the typical element dimensions in the truncated corner (near-

field) and center model (far-field) regions (refer to Figure 4).  Seven meshes were generated, 

each corresponding to a different λ ratio,  λ={0.1, 0.2, 0.3, 0.4, 0.5 , 0.75, 1.0}, where a larger λ 

indicates a coarser mesh in the truncated corner region.  

Table 1.  Study of element size ratio, λ. 

Element size 
ratio, λ 

Number of Elements Development of wrinkling 
deformations  

0.1 1,480 No 
0.2 1,260 No 
0.3 1,160 Yes 
0.4 1,080 Yes 
0.5 1,020 Yes 

0.75 940 Yes 
1.0 880 Yes 

 

Table 1 summarizes the information concerning the model data and wrinkling predictions.  In 

contrast to customary expectations, the meshes with the greater number of elements and higher 

degree of refinement in the stress concentration regions (λ = 0.1 and 0.2) produced no wrinkling, 

i.e., the resulting solutions were confined exclusively to membrane deformations.  A contour plot 

of the out-of-plane displacements for the λ=0.1 model is shown in Figure 5. Effectively, only the 

out-of-plane imperfections, which were initially imposed on the model, are shown as the small 

out-of-plane disturbances.  The distribution of the strain energy, illustrated in Figure 6, reveals 

that the free edge of the membrane has very low strain energy, almost two orders of magnitude 

lower than the energy in the load application region. With a very fine mesh near the load 

application, the analysis is favoring the membrane stress state–which is manifested by a high 

strain-energy–over the lower strain energy mode associated with the membrane-to-bending 

coupling and the ensuing wrinkling mode.  Therefore, wrinkling deformations were not able to 

develop using the superior level of refinement in the region of stress concentration. A closer look 
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at the load application region shows that the maximum strain energy is near the lines of 

symmetry and away from the free edges of the membrane–the regions that, according to 

experimental observations, undergo the largest amount of out-of-plane displacement. The λ=0.2 

model produced similar results for the out-of-plane displacements and strain energy.  

Simply by making the mesh coarser in the sharp corner regions where the load is applied, the 

computational models corresponding to the  λ={0.3, 0.4, 0.5 , 0.75, 1.0}  meshes, having overall 

fewer degrees-of-freedom, were able to reproduce the highly pronounced wrinkling displacement 

patterns. The contour plot in Figure 7, corresponding to the λ=0.3 model, shows highly 

pronounced wrinkling deformations, where the maximum amplitudes approach 19 times the 

membrane thickness. The pseudorandom imperfections applied to the initial geometry are two 

orders of magnitude smaller than the wrinkling displacements and do not provide any 

measurable contribution to the deformed structural shape. The corresponding strain energy 

distribution, shown in Figure 8, indicates that the maximum strain energy region has moved 

closer to the free edge and away from the symmetry line. As shown in Figure 9, the 

λ={0.4, 0.5 , 0.75, 1.0}    meshes were also able to generate deep wrinkles, having similar strain 

energy distributions as in the λ=0.3 model (not shown). A detailed examination of wrinkling 

displacements, that also include the results for the λ=0.3, is provided in Figure 10, where the 

wrinkled surface is cross-sectioned along two different directions in the close vicinity of the 

truncated corner region. It is seen that the length of the wrinkles decreases as λ   increases, and 

that the λ=0.3 model generates the longest wrinkles with the lowest amplitudes. In addition, as 

λ increases, the length of the wrinkles decreases and their deflection amplitudes increase.  

 

 



 9

Varying size of truncated corners 

In this study, the truncated corner size is varied to identify the significance of the load 

introduction detail and its influence on the prediction of wrinkles. Here, four different models 

were examined, each corresponding to the truncation size of δ={3.52, 7.04, 10.67, 14.42} mm, 

using the λ=0.4 mesh (perceived as optimal) from the first study. The various δ−truncation 

models were achieved by removing elements along the truncated edge in the finite element 

model. As implemented in the first study, symmetric out-of-plane imperfections were imposed in 

the corner regions of the membrane, with their magnitudes set at 10% of the membrane 

thickness. Moreover, statically equivalent distributed tractions were imposed along the corner 

truncation edges. 

The wrinkling displacement contours corresponding to the four δ−truncation models are 

shown in Figure 12.  The results show that the length of the wrinkles increases as the edge length 

of the truncated corner (δ) is increased.  Moreover, the wrinkling amplitudes tend to decrease as 

δ is increased.  The last case, for δ=14.42 mm, shows a dramatically deteriorating wrinkling 

pattern, indicating that the solution is favoring a membrane state. A closer look at the details of 

the wrinkles is provided in Figure 13, where the wrinkled surface is cross-sectioned along two 

different directions in the close vicinity of the truncated corner region. The results show that the 

original model with the shortest truncated edge (δ=3.52 mm) produces the longest and deepest 

wrinkles. It is also noted that the strain energy contours (not shown) indicate that strain energy 

concentration shifts from being evenly distributed over the truncated corner region for the 

shortest truncated corner edge to being concentrated along the symmetry line as the truncated 

corner edge is increased. 
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CONCLUSIONS 

 

In this paper, two numerical studies were carried out to gain further insight into the improved 

modeling of statically loaded, tensioned thin-film membranes that have regions of stress 

concentration and that undergo large out-of-plane wrinkling deformations.  The numerical 

studies focused exclusively on the problem of an initially flat, square thin-film membrane (a 

solar-sail like structure) subjected to the tensile, in-plane corner loads.  The problem, which has 

attracted considerable attention in recent years, was tested in a structures laboratory and analyzed 

by various finite element codes to investigate the onset of structural wrinkles.  

In these studies, the effects of mesh refinement and geometry augmentation of the corner 

(stress-concentration) regions were examined. The analyses used a four-node, Mindlin-type 

quadrilateral shell element, S4R5, based on the small strains, large displacements, reduced 

integration of the transverse shear energy, and an updated Lagrangian frame of reference, as 

implemented in ABAQUS.  The key modeling features included specifying small pseudorandom 

geometric imperfections that enable the initiation of the membrane-to-bending coupling that is 

necessary to start the onset of structural wrinkling.  The membrane corners were truncated to 

reduce the stress concentration, and uniform tensile tractions were applied along the truncated 

corner edges to replace the adverse effects resulting from applying concentrated loads.  

 The first study that concerned itself with the mesh refinement in the corner regions (of high 

stress concentration) revealed, at first glance, a somewhat counterintuitive result:  further 

refinements of the corner regions generated an entirely membrane response, producing none of 

the experimentally observed wrinkling deformations.  Such a result is clearly due to the basic 

characteristic of the finite element method that focuses its power primarily on enhancing those 
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modes of deformation that are associated with the higher strain-energy modes. In the present 

case, however, it is the membrane strain energy that is dominant and especially in the membrane-

dominated stress concentration region. Thus, what is commonly perceived as improved 

refinement of the stress concentration regions is actually detrimental for this class of problems 

where both low- and high-energy modes of deformation need to be captured; the refinement 

further suppresses the low energy modes associated with bending (wrinkling), and effectively 

locks the solution into the membrane-deformation mode. The study further showed that de-

refinement of the corner regions is actually beneficial, giving rise to an improved balance in the 

approximation of the membrane and bending deformations, resulting in wrinkling patterns that 

compare reasonably well with the experimental observation.  

 The second study examined the effect of various sizes of the truncated corners on the 

wrinkling response of a thin square membrane, in which the basic mesh characteristics were 

unchanged. This study was specifically aimed at addressing the question of the sensitivity of the 

wrinkling response to small geometric changes of the corner (boundary) conditions. It was 

demonstrated that relatively small changes in the size of the truncated region produced distinctly 

different wrinkling deformations, including their patterns, wavelength and depth. This aspect 

brings the importance of precise modeling of such regions into focus, particularly when specific 

membrane structures need to be modeled with a high degree of accuracy. 
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Figure 2: Square thin-film membrane (KAPTON® Type HN film) loaded in tension by corner tractions: 
Full FEM model with truncated corners using geometrically nonlinear S4R5 shell elements in ABAQUS 
code [7]. 
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Figure 1: Square thin-film membrane (KAPTON® Type HN film) loaded in tension by corner forces as 
tested by Blandino et al. [1]. 
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Figure 4: Square thin-film membrane (KAPTON® Type HN film) loaded in tension by corner 
tractions: Symmetric-quadrant model with truncated corners used in numerical studies. 
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Figure 3. Wrinkling deformations of square thin-film membrane (KAPTON® Type HN film) loaded in 
tension by corner tractions a) Experiment (Capacitance sensor measurement) [1], and b) Geometrically 
nonlinear FEM shell analysis (ABAQUS-S4R5) [7]. 



 15

 

 
 

w, mm
+0.0044
+0.0040
+0.0035
+0.0030
+0.0025
+0.0021
+0.0016
+0.0011
+0.0006
+0.0002
-0.0003
-0.0008
-0.0012

w, mm
+0.0044
+0.0040
+0.0035
+0.0030
+0.0025
+0.0021
+0.0016
+0.0011
+0.0006
+0.0002
-0.0003
-0.0008
-0.0012

w, mm
+0.0044
+0.0040
+0.0035
+0.0030
+0.0025
+0.0021
+0.0016
+0.0011
+0.0006
+0.0002
-0.0003
-0.0008
-0.0012

 
Figure 5: Out-of-plane deformations corresponding to λ = 0.1 symmetric-
quadrant model. 
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Figure 6: Strain energy contours corresponding to λ = 0.1  symmetric-
quadrant model (local mesh detail). 
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Figure 7: Wrinkling deflection contours corresponding to λ = 0.3  symmetric-
quadrant model. 
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Figure 8: Strain energy contours corresponding to λ = 0.3  symmetric-
quadrant model. 
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Figure 9: Wrinkling deflection contours corresponding to a) λ = 0.4, b) λ = 0.5, c) λ = 0.75, and d) λ = 1.0 
symmetric-quadrant models. 
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Figure 10: Wrinkling deflection along a) line A-B b) line C-D. 
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Figure 11: Maximum element strain energy density for mesh refinement study. 
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c)       d) 

 
Figure 12: Wrinkling deflection contours corresponding to a) δ = 3.52 mm, b) δ = 7.04 mm, c) δ = 10.67 mm, 
and d) δ = 14.42 symmetric-quadrant models. 
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Figure 13: Wrinkling deflection distribution along a) line A-B b) line C-D 


